Revised and edge revised Szeged indices of graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the revised edge-Szeged index of graphs

The revised edge-Szeged index of a connected graph $G$ is defined as Sze*(G)=∑e=uv∊E(G)( (mu(e|G)+(m0(e|G)/2)(mv(e|G)+(m0(e|G)/2) ), where mu(e|G), mv(e|G) and m0(e|G) are, respectively, the number of edges of G lying closer to vertex u than to vertex v, the number of ed...

متن کامل

PI, Szeged and Revised Szeged Indices of IPR Fullerenes

In this paper PI, Szeged and revised Szeged indices of an infinite family of IPR fullerenes with exactly 60+12n carbon atoms are computed. A GAP program is also presented that is useful for our calculations.

متن کامل

Revised Szeged Index of Product Graphs

The Szeged index of a graph G is defined as S z(G) = ∑ uv = e ∈ E(G) nu(e)nv(e), where nu(e) is number of vertices of G whose distance to the vertex u is less than the distance to the vertex v in G. Similarly, the revised Szeged index of G is defined as S z∗(G) = ∑ uv = e ∈ E(G) ( nu(e) + nG(e) 2 ) ( nv(e) + nG(e) 2 ) , where nG(e) is the number of equidistant vertices of e in G. In this paper,...

متن کامل

pi, szeged and revised szeged indices of ipr fullerenes

in this paper pi, szeged and revised szeged indices of an infinite family of ipr fullereneswith exactly 60+12n carbon atoms are computed. a gap program is also presented that isuseful for our calculations.

متن کامل

Bicyclic graphs with maximal revised Szeged index

e=uv∈E(nu(e)+n0(e)/2)(nv(e)+n0(e)/2), where nu(e) and nv(e) are, respectively, the number of vertices of G lying closer to vertex u than to vertex v and the number of vertices of G lying closer to vertex v than to vertex u, and n0(e) is the number of vertices equidistant to u and v. Hansen used the AutoGraphiX and made the following conjecture about the revised Szeged index for a connected bicy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ars Mathematica Contemporanea

سال: 2013

ISSN: 1855-3974,1855-3966

DOI: 10.26493/1855-3974.269.44e